The Meaning of Life According to Yeast

Wyeast Laboratories, Inc.

By: Greg Doss, David Logsdon & Company

Jess Caudill – Wyeast Microbiologist & Brewer

General Yeast Metabolism
Fermentation By-products

Oxygenation

Cell Counts and Pitch Rates

The Meaning of Life According to Yeast

Not make BeerNot leaven Bread

Survive and Grow

Providing Yeast Optimum Conditions

Positive Effects;

*Fermentation temperatures warmer rather than cold.

*Low wort pH: < 5.3 pH

*Temperature rise midway through fermentation.

*Pale Malts with high valine Content.

*Adequate dissolved wort oxygen.

Wort Stability Testing – A Pure Environment is Essential •After incubation of sample; visible evaluation

•No CO2

•No clouding of the wort sample.

•Sweet wort aroma and no phenolic or other off odors.

•Variations from these results indicate:

•Likely contamination of heat exchanger of process lines.

•Contamination of beer being produced and yeast in fermenter.

Extensive cleaning required, and new yeast culture.

Wort Composition

- Fermentable Carbohydrates/ Sugars
- Amino Acids
- Dextrins
- Lipids
- Vitamins
- Inorganic Ions

Fermentable Carbohydrates/ Sugars

•	Fructose	2%
	THUCUSC	270

- Glucose 8%
- Sucrose 6%
- Maltose 45%
- Maltotriose 10%

Phases of Metabolism

- Cell Wall Synthesis/ O₂ Uptake
- Sugar Uptake
- Nitrogen Uptake
- Fermentation (Glycolysis)
 Energy production
 Cell growth
 Acidification
 Production of By-products

Cell Wall Synthesis

- Must be permeable for nutrient uptake
- Sterol Synthesis
 - Requires
 - Internal energy reserves Glycogen
 - Oxygen
- Sterol levels
 - @ pitching <0.1% cell
 - @ Peak fermentation 1.0% cell
- Glycogen is depleated during storage.
- Low O2 or Glycogen leads to sluggish fermentation

Order of Sugar Uptake

Glucose Fructose Sucrose Maltose Malotriose

Sucrose split into Glucose & Fructose extracellularly prior to uptake, Maltose & Maltotriose are Split into Glucose Molecules by Permease and Maltase Enzymes

Nitrogen Uptake

- NH₃ utilized for protein synthesis
- Carbon Skeleton pre-curser Fusel Alcohols
- Shock Excretion

 Osmotic pressure from high wort gravity can cause cell to excrete essential Nitrogen back into wort.

Fermentation

Fermentation By-products

- Alcohol
- Acetaldehyde
- Fusel High Alcohols
- Esters
- Ketones

Alcohol

Major excretion product

 Anaerobic Fermentation
 Cell detoxification mechanism from Pyruvate and Acetaldehyde build up

Little impact on overall flavor

Acetaldehyde

- Flavor
 - Green beer flavors, grassy, green apple
- Formed as an intermediate product of fermentation
- Conditions that favor formation include:
 - Increase Temp
 - Increase Oxygen
 - High pitching rates
 - Pressure during fermentation

Higher/Fusel Alcohols

- Flavors
 - Alcohol solvent character, rough, possible roses, banana, chemical, medicinal
- Formed
 - carbon skeletons from amino acids reduced to corresponding alcohol
- Conditions that favor formation include;
 - Increase Oxygen
 - Decrease Pitch Rate
 - Increase Temp
 - Increase Gravity
 - Amino Acid Supplementation or Deficiency
- Examples include
 - Isoamyl alcohol
 - Isobutanol
 - n-Propanol

banana, solvent

alcohol, rough alcohol, rough

• Flavors

- Fruity, banana, solvent, apples
- Formed
 - Fusel Alcohol combines with a Acetyl CoA Fatty Acid
- Conditions that favor formation include;
 - Decrease Oxygen
 - Increase Temperature
 - Fusel Alcohol pre-cursers
 - Increase gravity
 - Increase trub
 - Contradictory information on cell growth effects
- Examples include
 - Isoamyl acetate
 - Ethyl acetate
 - Phelylthyl acetate
 - Ethyl Caprylate

Banana Light fruity solvent Roses, honey, Apple Apple-like

Ketones/ VDK(vincinal di-ketone)

- Flavors
 - buttery, butterscotch, fruity, musty, honey, rubber
- Formed
 - Oxidation of Amino acid synthesis intermediates (Valine, Isoleucine).

Butter

honey

- Can be reduced later in fermentation
- Conditions that favor formation include;
 - Increase O2 post fermentation
 - Decrease pitch rate
 - Increase Temperature during fermentation
 - Yeast deficiency of Amino acid uptake
 - Wort deficiency of Amino acid

• Examples include

- Diacetyl
- 2,3 pentadione

Main factors in By-product formation

- Yeast Strain
- Yeast Condition
- Wort composition
- Temperature
- Level of Aeration
- Pitch Rates

By-product formation influenced by conditions that favor cell growth

- Increase Dissolved Oxygen
- Decrease Pitch Rate
- Increase Temperature
- Increase Gravity

Aeration DO Dissolved OxygenExperiment

•5 flask fermentations with increasing levels of DO

•Optical density measured every 12 hours

Results

•Increases in DO = increased cell growth

Sensory Experiment DO levels affect on Beer Flavors

- Flask fermentations with increasing levels of DO
 - DO levels 6, 14, 28 ppm
 - Wyeast # 1007 Alt- Pale Wort
 - Wyeast # 3068 Wheat- Amber Wort

DO levels affect on Beer Flavors Results

• 1007- Pale

Prefered sample 28 ppm

- Coments were mixed

• 3068- Amber

Prefered sample 6 ppm

– Most banana/ fruit character

#	yeast	isoamyl	GC-O	lsoamyl	GC-O	flavor
	type	acetate	value	alcohol	value	panel
		normalized		normalized		
1	Belgian Ale Yeast	87.4	1537	184	712	strong banana
2	Trappist High Gravity	33.5	1413	90	682	
3	Belgian Ardennes Yeast	27.3	1102	73	1054	banana
4	German Wheat Yeast	20.4	846	120	1515	banana
5	Weihenstephen Weizen Yeast	60.3	1946	104	1293	strong banana
6	American Wheat	31.1	1584	94	1896	
7	Belgian Abbey Yeast II	44.3	2197	99	1856	
8	Forbidden Fruit Yeast	47.2	694	177	1153	
9	Belgian Wheat Yeast	32.9	527	124	664	banana
10	Belgian Whitbier Yeast	36.2	1062	115	591	
11	Bavarian Wheat Yeast	52.9	1213	131	1563	strong banana
12	Canadian/Belgian Style Yeast	26.2	998	109	1198	
13	Leuven Pale Ale Yeast	27.9	835	85	449	banana

- 1) Isoamyl acetate is the yeast metabolite responsible for the banana flavor in beer.
- 2) Sample 1, 5 and 11 have the highest amounts of isoamyl acetate and these where found to have the strongest banana flavor by the panel.
 - The samples with lower levels of isoamyl acetate have their banana flavor blended with the other fruity notes so that no distinct banana is perceived.

3)

4) Isoamyl alcohol is a yeast metabolite which is responsible for the fusel oil note in beer.

5) Isoamyl alcohol is the only other aliphatic alcohol in beer besides ethanol present at levels that make a flavor contribution.

series	1 is	isoamyl	alcohol	
series	2 is	isoamyl	acetate *	2

Aromatic-based Flavors:

styrene/vinyl-guaiacol/phenyl ethyl alcohol/phenyl ethyl acetate

- 1) The same two beers that have no styrene, samples 6 and 7, also have very low levels of 4-vinyl-guaiacol. This suggests a metabolic link between styrene and 4-vinyl guaiacol.
- 2) It is also seen that there is generally a correlation between styrene and phenyl ethyl alcohol concentrations.

Note: The counts scales are different for each compound

Series 1: styrene

Series 2: 4-vinyl guaiacol

Series 3: phenyl ethyl alcohol

Series 4: phenyl ethyl acetate

Methods of Aeration Test

- Syphon Spray
- Splashing and Shaking
- Aquarium pump though stone
- "Oxynater" Pure oxygen through stone

OK

BEST

Aeration Test Results

Method	<u>DO ppm</u>	<u>Time</u>
Syphon Spray	4 ppm	0 sec.
Splashing & Shaking	8 ppm	40 sec.
Aquarium Pump w/ stone	8 ppm	5 min
Pure Oxygen w/ stone	0-26ppm	60 sec

Conclusions

Pumping air though a stone is not efficient
Splashing/ Shaking is effective up to 8 ppm
Pure Oxygen is easiest and most effective with most control.

Aeration Pure O₂ and Stone DO levels vs. Time

Pitch Rates

Pitch Rate Influences Cell Growth Low Pitch Rate High cell growth High Pitch Rate Low cell growth

Rule of thumb 1x10⁶ cells/ml/ P^o

Cell Growth vs. Pitch Rate Experiments

- Flask fermentations with varying pitch rates

 Monitored OD, pH, Gravity Drop
- Sensory Analysis with tasting panel 3 strains
 - Wy 1007 German Alt- Pale Wort
 Wy 3068 Weihenstephan Wheat- Amber Wort
 Wy 2124 Bohemian Lager- Amber Wort

Cell Growth vs. Pitch Rate

OD 600 vs. Time

Cell Growth vs. Pitch Rate

Pitch Rate	<u>Doublings</u>	Increase OD
3x10 ⁶ cells/ml	2.22	1.58
6x10 ⁶ cells/ml	1.81	1.47
12x10 ⁶ cells/ml	1.56	1.37
24x10 ⁶ cells/ml	1.02	1.09
50x10 ⁶ cells/ml	0.63	0.81

Gravity Drop vs. pH

Sensory Results

- 1007 German Alt- Pale Wort
 - Prefered sample 24 X 10⁶ cpm
 - Nice Hop character, Dry, Clean and balanced
- 3068 Weihenstephan Wheat- Amber Wort
 - Prefered sample 6 X 10⁶ cpm
 - Balanced, complex banana and fruit
- 2124 Bohemian Lager- Amber Wort
 - Prefered sample 24 X 10⁶ cpm
 - Balanced with nice hops, mild fruit

Cell Estimating/Count

Allow Yeast to settle under refrigeration

Estimate Yeast Pack

Take into consideration Trub and Flocculation (Powdery strains don't pack)

Calculating Pitch Rates

- Decide how many cells/ ml wanted in fermenter – eg. 6x10⁶ cells/ ml
- Calculate Total Cells Needed

 (Cells/ ml) x (total mls In fermenter)
 (19 liters =1.9x 10⁴ mls)
 eg. (6x10⁶ cells/ml) x (1.9x10⁴ mls) = 1.14x10¹¹ cells
- (Divide Total cells)/(Cell count of slurry)= mls slurry to pitch
 - eg. (1.14x10¹¹ total cells)/(1.0x10⁹ cells/ ml)

Answer 114 mls slurry

Science vs. Reality

What the book says isn't always how it works out. Trust the results that you achieve in you brewery first. There are a lot of variables.

Questions?

Greg Doss Jess Caudil Wyeast Laboratories, Inc. Iabservices@wyeastlab.com www.wyeastlab.com