## Microbiology of mixed culture beers

Caleb Levar





## Mixed cultures and their influence on beer production

Prior to Pasteur, ALL beer production influenced by microbes in addition to *Saccharomyces spp.* 



## Mixed cultures and their influence on beer production

Prior to Pasteur, ALL beer production influenced by microbes in addition to *Saccharomyces spp.* 

1) Suppress influence by hops, cold temps, rapid consumption, etc.

## Mixed cultures and their influence on beer production

Prior to Pasteur, ALL beer production influenced by microbes in addition to *Saccharomyces spp.* 

1) Suppress influence by hops, cold temps, rapid consumption, etc.

### OR

2) Embrace the influence of "wild" yeast and bacteria

### Why mixed cultures?

"...if the application of the pure culture method has improved the average quality of the beer, if it has decreased the chances of infection, **it has given us beer with less character than before**." Marc H. Van Laer, 1920's

### Why mixed cultures?

"...if the application of the pure culture method has improved the average quality of the beer, if it has decreased the chances of infection, **it has given us beer with less character than before**." Marc H. Van Laer, 1920's

Dry (0-2 °P, vs 2-4+ °P for pure cultures)
Tart → Sour (pH 3.2-3.9, lactic and acetic acid)
Funky (Phenols, acids, esters)

### A note on nomenclature...

"Sour" beer... vs. "Wild" beer... vs. Something else entirely

### Similar microbes across techniques



### Where to get the microbes?

- Commercial organisms
- Barrel microbes, bottle dregs

"Spontaneous" inoculation



Beijerinck and Baas-Becking : "Everything is everywhere, but the environment selects"



### What's happening here?

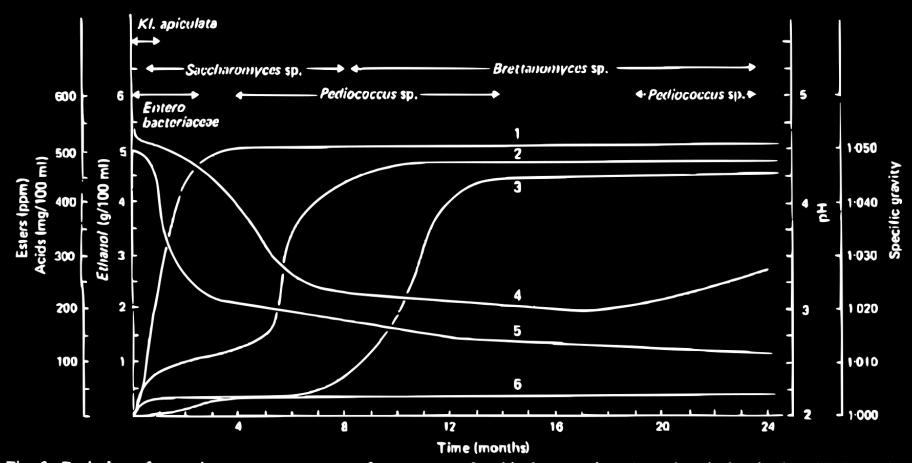



Fig. 3. Evolution of some important parameters of spontaneous Lambic fermentation: l = cthanol; 2 = lactic acid; 3 = cthy-lactate; 4 = pH; 5 = real extract content; 6 = acetic acid.

#### Saccharomyces

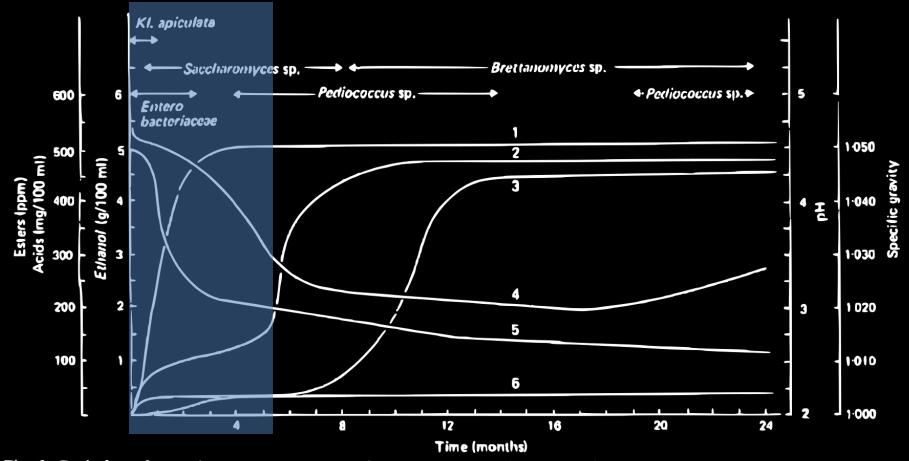



Fig. 3. Evolution of some important parameters of spontaneous Lambic fermentation: l = ethanol; 2 = lactic acid; 3 = ethy-lactate; 4 = pH; 5 = real extract content; 6 = acetic acid.

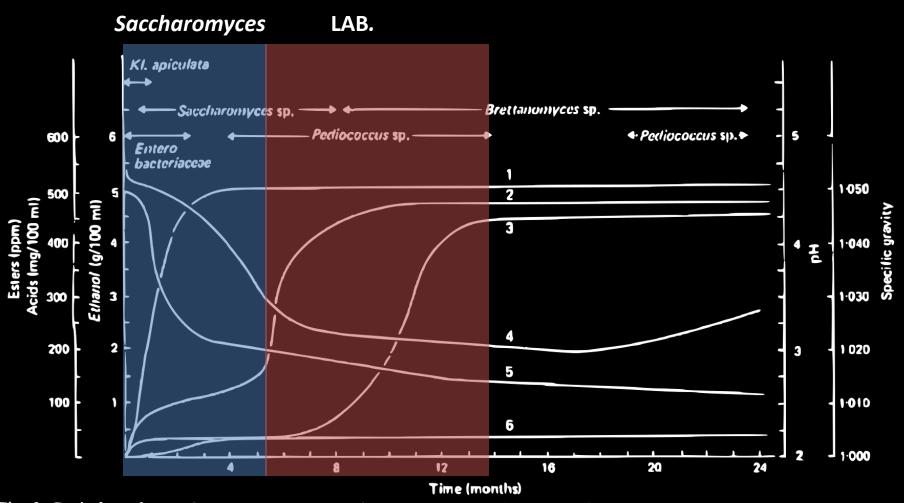



Fig. 3. Evolution of some important parameters of spontaneous Lambic fermentation: 1 = cthanol; 2 = lactic acid; 3 = cthy-lactate; 4 = pH; 5 = real extract content; 6 = acetic acid.

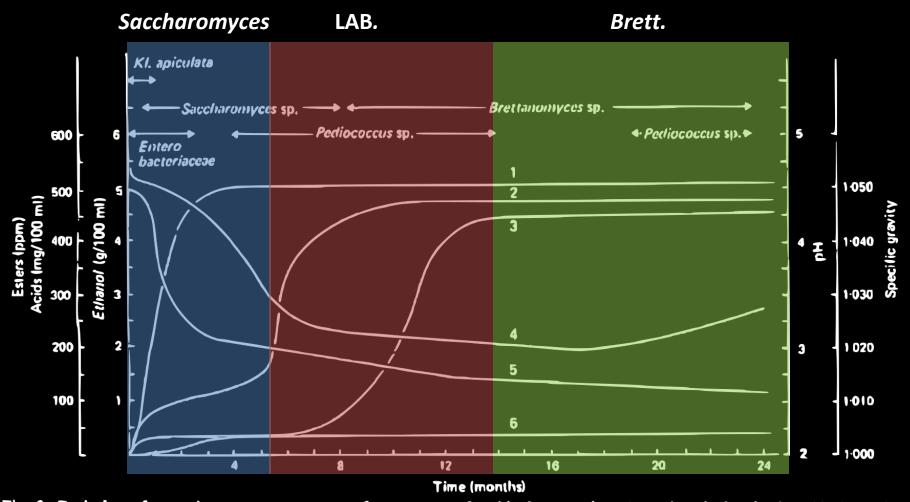



Fig. 3. Evolution of some important parameters of spontaneous Lambic fermentation: 1 = cthanol; 2 = lactic acid; 3 = cthy-lactate; 4 = pH; 5 = real extract content; 6 = acetic acid.

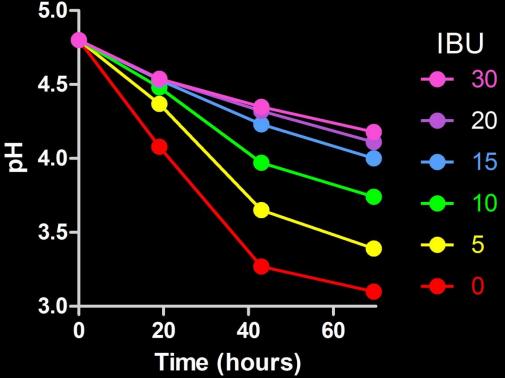
### Main microbial players

- Saccharomyces spp.
  - Standard brewers yeast: sugar  $\rightarrow$  alcohol, CO<sub>2</sub>
- Lactobacillus spp.
  - Lactic acid bacteria: sugar  $\rightarrow$  lactic acid
- Pediococcus spp.
  - Lactic acid bacteria: sugar/starch  $\rightarrow$  lactic acid
- Brettanomyces spp.

- "Wild" yeast: sugar  $\rightarrow$  alcohol, CO<sub>2</sub>, "funk"

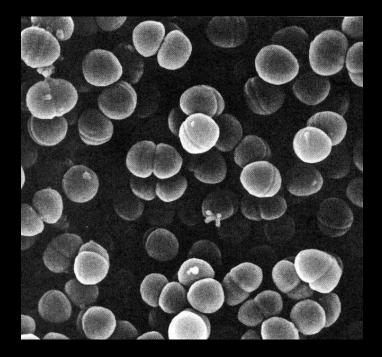
### Lactobacillus for hot side sours

### NAD+ NADH A Lactic Acid



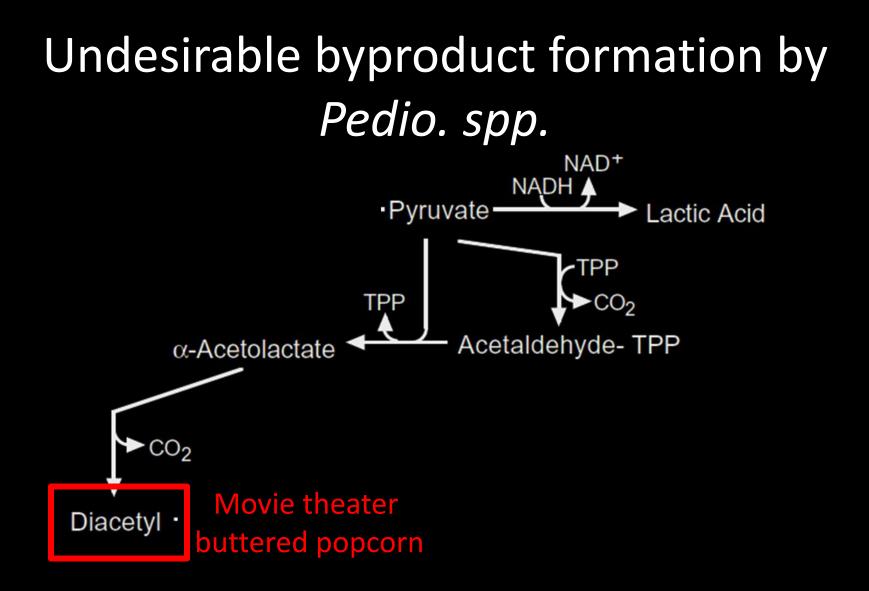






# Lactobacillus for hot side sours

- LAB added to wort
- pH drop monitored
- Wort boiled to kill 표 4 LAB
- *Sacch.* pitched into cooled wort




### Pediococcus for acid production

- Beer conditions favor *Pedio. spp.* over other LAB
  - More tolerant
     of low pH
  - More tolerant of hops
  - Able tohydrolyze starch

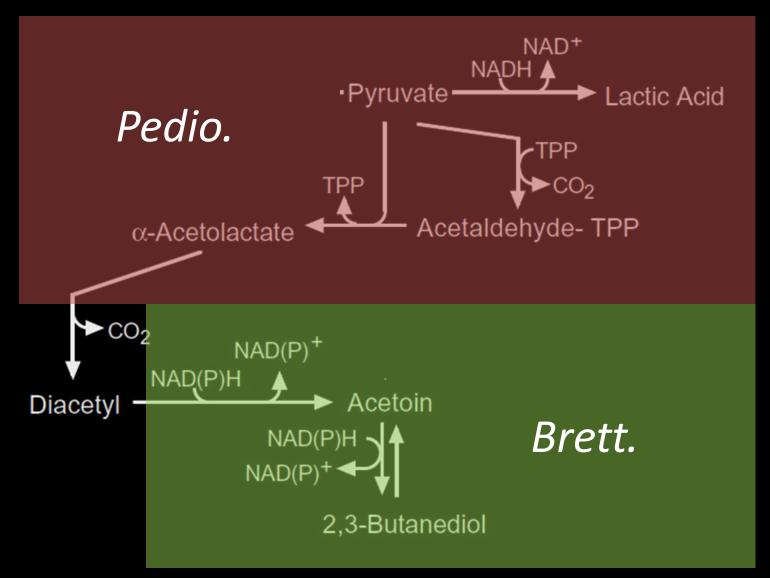


### Undesirable byproduct formation by *Pedio. spp.*

•Pyruvate Lactic Acid



## Undesirable byproduct formation by *Pedio. spp.*


TABLE III Effect of Carbon Source on Slime Production

| Substrates           | Concentration<br>(g/L) | Relative Amount<br>of Slime <sup>a</sup> |
|----------------------|------------------------|------------------------------------------|
| Glucose              | 5                      | ++                                       |
|                      | 10                     | +++                                      |
|                      | 20                     | +++                                      |
|                      | 40                     | +++                                      |
| Maltose              | 10                     | +++                                      |
| Saccharose           | 10                     | +                                        |
| Galactose            | 10                     | ±                                        |
| Lactose              | 10                     | <u>±</u>                                 |
| Fructose             | 10                     | +++                                      |
| Glucose and fructose | 5 + 5                  | +++                                      |

\* ± = Only cell deposit is viscous. + = Threads < 1 cm. + = Threads 1 5 cm. +++ = Threads > 5 cm.

D. Van Oevelen and H. Verachtert, 1979

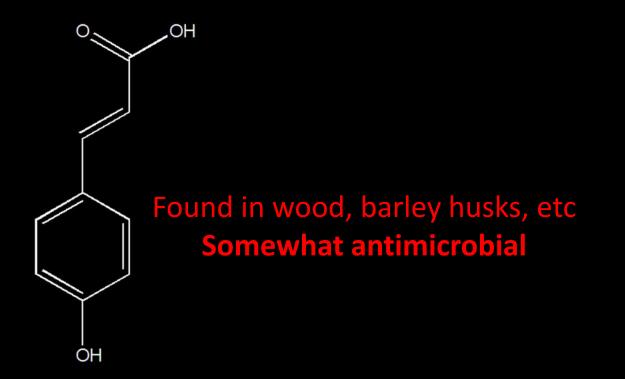
### Brettanomyces for cleanup



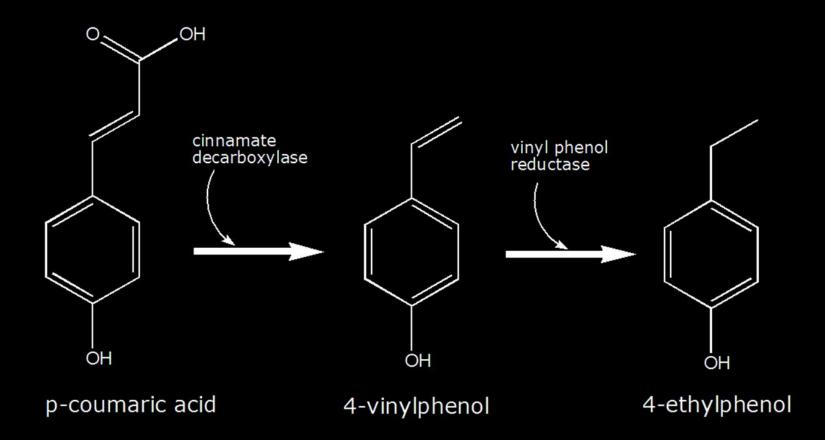
### Brettanomyces for cleanup

|                               | Viscosity (% S) |               |  |
|-------------------------------|-----------------|---------------|--|
| Yeast Added to 3-Week Culture | At Inoculation  | After 2 Weeks |  |
| None                          | 87              | 51            |  |
| S. cerevisiae                 | 87              | 55            |  |
| B. bruxellensis               | 87              | 27            |  |
| B. lambicus                   | 87              | 32            |  |

D. Van Oevelen and H. Verachtert, 1979


**Brettanomyces** yeasts show esterase activity towards a large number of esters but especially towards esters normally found in Gueuze: ethyl acetate, ethyl lactate, *iso*-amyl acetate and phenethyl acetate. The esterase activity is expressed by whole cells of all **Brettanomyces** strains in

• Esterification!

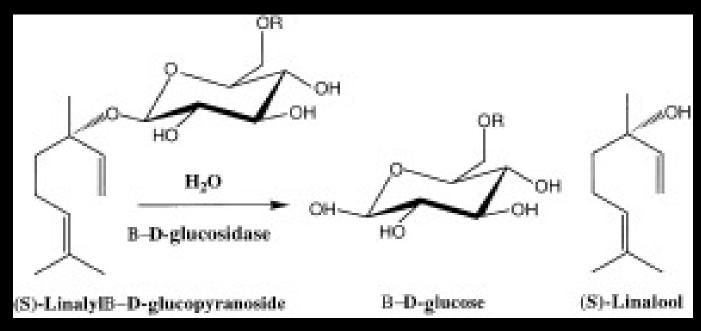

$$\begin{array}{c} O \\ R-C-O-H \\ + \\ R-O-H \\ \end{array} \xrightarrow{} \begin{array}{c} O \\ R-C-O-R \\ + \\ H_2C \\ \end{array}$$

- Need an acid and an alcohol
- It's all about the precursors
  - Can come from Sacch., Brett., other microbes, ingredients, etc.

| Acid       | Character                        | Ester             | Character                                                   |
|------------|----------------------------------|-------------------|-------------------------------------------------------------|
| Acetic     | Sour, Pungent,<br>Vinegary       | Ethyl Acetate     | Sharp, Musty, Fruity,<br>Pineapple, Solvent,<br>Nail Polish |
| Lactic     | Tart, Tangy, Sour                | Ethyl Lactate     | Soft, Tart, Fruity,<br>Buttery                              |
| Caproic    | Soapy                            | Ethyl Caprate     | Waxy, Oil, Fruity,<br>Brandy                                |
| Caprylic   | Goaty, Fatty, Zoo-like           | Ethyl Caprylate   | Waxy, Wine, Floral,<br>Tropical fruit, Brandy               |
| Butyric    | Rubber, Rancid,<br>Cheesy, Fatty | Ethyl Butyrate    | Fruity, Juicy Fruit,<br>Pineapple, Cognac                   |
| Isobutyric | Rancid, Sweaty,<br>Cheesy, Fatty | Ethyl Isobutyrate | Citrus, Fruity                                              |
| Isovaleric | Rancid, Cheesy, Horsy            | Ethyl Isovalerate | Fruity, Sweet, Apple,<br>Pineapple, Tutti Frutti            |
|            |                                  | From "W           | /ild Brews", Jeff Sparrow                                   |



p-coumaric acid




"Barnyard, mousy, Band-Aid"

### Biotransformation by Brett.

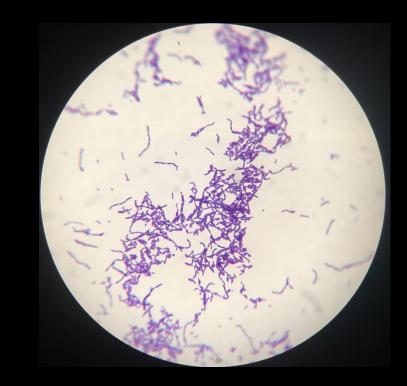
Some yeasts able to liberate aroma compounds via enzymatic activity

 – β-glucosidase produced by some *Brett. spp.*



Raguso et al 1999

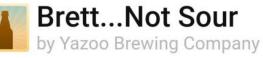
### Brett. can do a lot....




### Brett. beers are not sour



### Sour beers utilize more than Brett.






### Why does this matter?

Knowing what each microbe can do informs recipes and chosen microbes





Pretty much undrinkable. If you try to make a Brett and it doesn't come out sour just pour it all out. Shame on Yazoo...



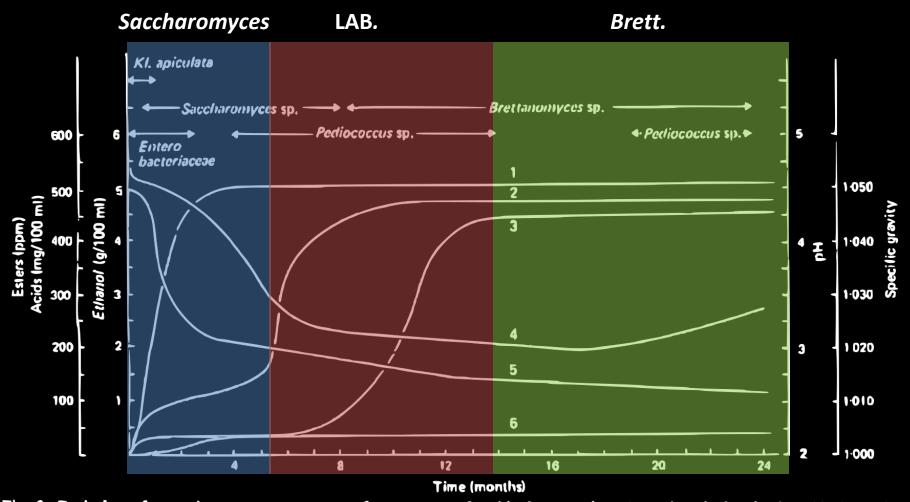
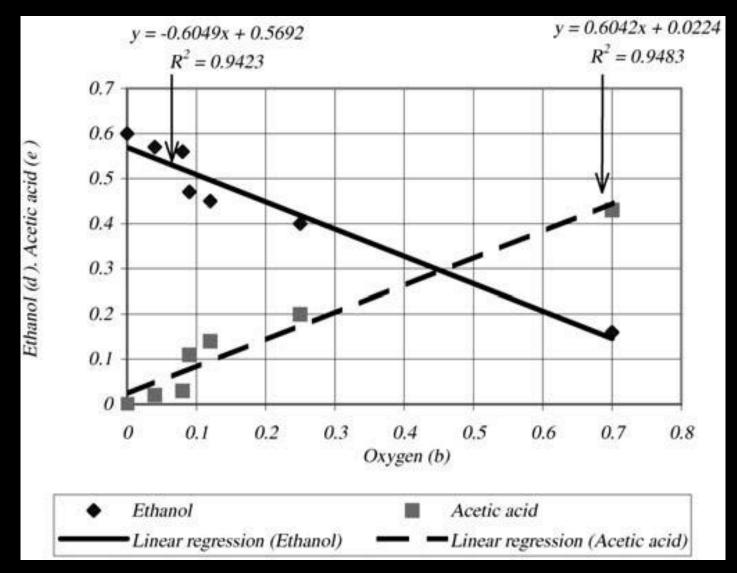




Fig. 3. Evolution of some important parameters of spontaneous Lambic fermentation: 1 = cthanol; 2 = lactic acid; 3 = cthy-lactate; 4 = pH; 5 = real extract content; 6 = acetic acid.

Beijerinck and Baas-Becking: "Everything is everywhere, but the environment selects" Beijerinck and Baas-Becking: "Everything is everywhere, but brewers must apply appropriate selection"

### "Messieurs, c'est les microbes qui auront le dernier mot."

## Brett. and acid production

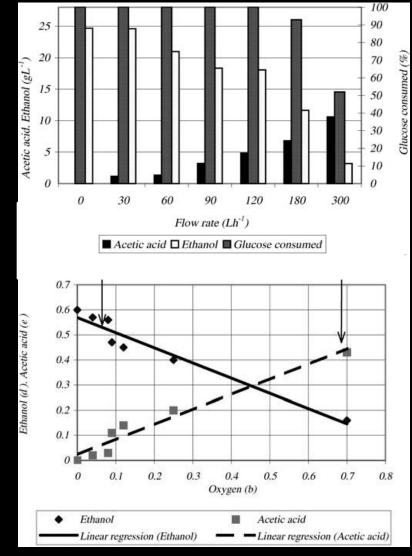


# Brett. and acid production

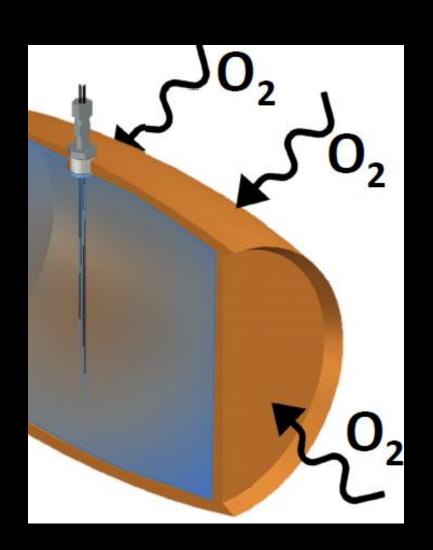
#### Anaerobic

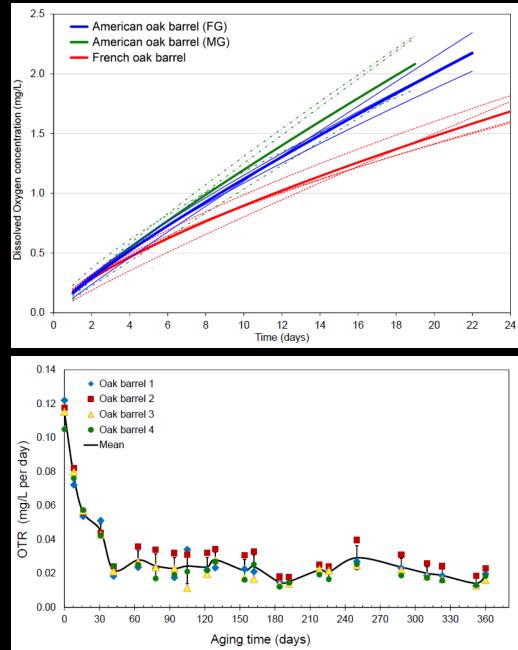
#### Aerobic

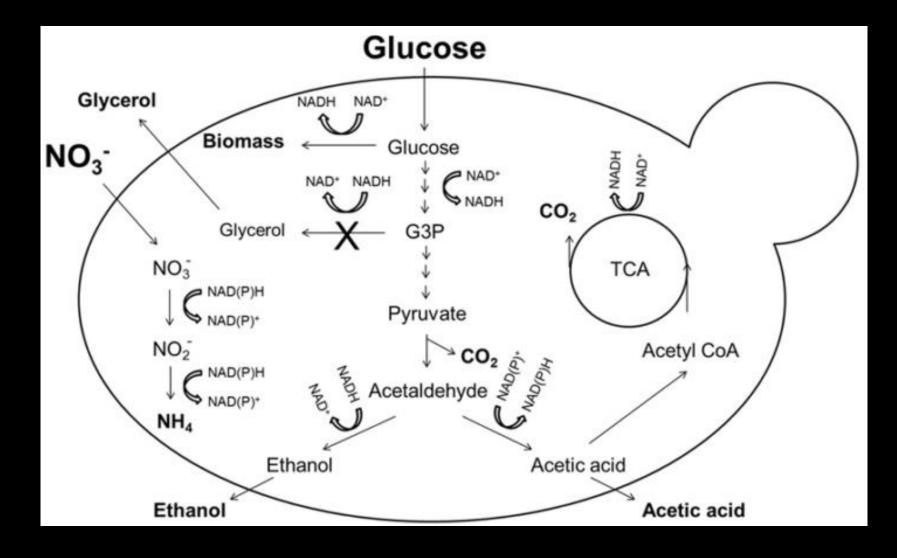
| Culture <sup>a</sup><br>(NRRL) | Growth<br>(A <sub>600</sub> ) | Acetate<br>(g/l) | Ethanol<br>(g/l) | Residual glucose<br>(g/l) |  |
|--------------------------------|-------------------------------|------------------|------------------|---------------------------|--|
| B. bruxellensis                |                               |                  |                  |                           |  |
| Y-1412                         | 25.84                         | 1.1              | 45.6             | 0.0                       |  |
| Y-1411                         | 24.78                         | 0.0              | 48.5             | 0.0                       |  |
| B. lambicus                    |                               |                  |                  |                           |  |
| Y-1330                         | 16.05                         | 0.0              | 51.9             | 0.0                       |  |
| B. claussenii                  |                               |                  |                  |                           |  |
| Y-2290                         | 33.89                         | 3.0              | 49.0             | 0.0                       |  |
| Y-1414                         | 30.44                         | 0.0              | 49.4             | 0.0                       |  |
| B. anomalus                    |                               |                  |                  |                           |  |
| Y-1415                         | 30.40                         | 0.4              | 47.1             | 2.8                       |  |
| Y-12670                        | 31.17                         | 0.0              | 50.4             | 0.0                       |  |
| Brettanomyce                   | s sp.                         |                  |                  |                           |  |
| YB-5260                        | 13.67                         | 3.4              | 48.9             | 0.3                       |  |
| D. intermedia                  | 1                             |                  |                  |                           |  |
| YB-4553                        | 41.37                         | 0.0              | 48.9             | 0.0                       |  |
| Y-1092                         | 38.11                         | 1.0              | 48.5             | 0.0                       |  |
| YB-4241                        | 32.01                         | 1.3              | 49.4             | 0.0                       |  |
| D. bruxellensis                |                               |                  |                  |                           |  |
| Y-17534                        | 37.65                         | 1.0              | 45.0             | 0.0                       |  |
| Y-12961                        | 21.74                         | 1.0              | 50.6             | 0.0                       |  |
| D. anomala                     |                               |                  |                  |                           |  |
| Y-17521                        | 29.79                         | 0.0              | 48.9             | 0.0                       |  |
| Y-17520                        | 29.60                         | 0.0              | 48.7             | 0.0                       |  |
| Y-17522                        | 29.30                         | 0.0              | 50.1             | 0.0                       |  |
| Z. bailii                      |                               |                  |                  |                           |  |
| Y-2227                         | 8.09                          | 1.0              | 49.6             | 3.4                       |  |
| Z. bisporus                    | Z. bisporus                   |                  |                  |                           |  |
| <b>Y-7558</b>                  | 21.31                         | 0.0              | 46.1             | 3.0                       |  |
| P. fermentans                  | r                             |                  |                  |                           |  |
| Y-1619                         | 14.19                         | 2.0              | 45.6             | 0.0                       |  |
|                                |                               |                  |                  |                           |  |


| Culture <sup>a</sup><br>(NRRL) | Growth<br>(A <sub>600</sub> ) | Acetate<br>(g/l) | Ethanol<br>(g/l) | Residual glucose<br>(g/l) |
|--------------------------------|-------------------------------|------------------|------------------|---------------------------|
| B. bruxellensis                |                               |                  |                  |                           |
| Y-1412                         | 35.37                         | 22.9             | 21.8             | 14.4                      |
| B. claussenii                  |                               |                  |                  |                           |
| Y-2290                         | 34.61                         | 24.6             | 15.4             | 41.2                      |
| B. anomalus                    |                               |                  |                  |                           |
| Y-1415                         | 39.51                         | 22.4             | 23.8             | 17.1                      |
| B. custersianus                |                               |                  |                  |                           |
| Y-6653                         | 82.63                         | 0.0              | 0.0              | 53.4                      |
| B. intermedius                 |                               |                  |                  |                           |
| Y-2394                         | 19.45                         | 29.6             | 10.5             | 40.2                      |
| Y-2395                         | 32.25                         | 29.1             | 13.5             | 31.2                      |
| YB-3363                        | 32.33                         | 23.7             | 11.0             | 43.6                      |
| D. intermedia                  |                               |                  |                  |                           |
| YB-5164                        | 33.99                         | 31.7             | 6.1              | 48.1                      |
| YB-4553                        | 33.72                         | 30.0             | 24.3             | 57.4                      |
| Y-1092                         | 32.09                         | 21.2             | 16.7             | 33.4                      |
| YB-4241                        | 33.15                         | 21.6             | 21.6             | 20                        |
| D. bruxellensis                |                               |                  |                  |                           |
| Y-17523                        | 27.13                         | 24.0             | 6.2              | 67.9                      |
| Y-17535                        | 28.56                         | 18.7             | 10.5             | 49.1                      |
| Y-17525                        | 34.96                         | 31.6             | 15.7             | 26.1                      |
| Y-17524                        | 29.70                         | 26.9             | 7.0              | 52.3                      |
| Y-17534                        | 31.26                         | 19.0             | 8.5              | 52                        |
| D. anomala                     |                               |                  |                  |                           |
| Y-17521                        | 29.00                         | 23.0             | 18.6             | 29.8                      |
| Y-17520                        | 26.66                         | 24.4             | 10.2             | 24.4                      |
| Y-17522                        | 29.19                         | 20.4             | 7.7              | 58.8                      |
|                                |                               |                  |                  |                           |

# Brett. and acid production


- Brett CAN produce acid
   BUT
- Only in the presence of oxygen or other electron acceptors


## AND


- It's acetic acid
   AND
- Costs EtOH and AA



| Test                                          | Oxygen Transfer Rate | Citation                         |
|-----------------------------------------------|----------------------|----------------------------------|
| Theoretical Max,<br>Semipermeable<br>membrane | 37mg/L/year          | Kelly and Wollan, 2003           |
| Measured, New French<br>Oak                   | 20mg/L/year          | Vivas and Glories, 1997          |
| Measured, Fine Grain<br>American Oak,         | 11.6mg/L/year        | Alamo-Sanza and Nevares,<br>2014 |





