Dry-hopping Research at OSU A peek inside the Shellhammer Lab

Thomas H. Shellhammer Department of Food Science and Technology

Brewing Science (and beer-related) at OSU

- Brewing Chemistry/Engineering Tom Shellhammer
- Brewing Micro/Genetics Chris Curtin
- Pilot Research Brewery Jeff Clawson
- Instructor/Advisor Glen Li
- Barley breeding & malting Pat Hayes
- Hops breeding Shaun Townsend & John Henning
- Hops pathology Dave Gent
- Hops & health Fred Stevens
- Beer Economics Vic Tremblay
- Oregon Hops and Beer Archives Tia Edmunson-Morten

Exciting times for brewing research and teaching

Dry-hopping research in the Shellhammer lab

- Whirlpool vs Dry-hopping Cultivar differences
- Dosing rates and extraction efficiencies
- · Bitterness pick up during dry-hopping
- Hop creep overattenuation following dry-hopping
- Hop enzymes impact beer quality

OREGON STATE UNIVERSITY 8

Daniel Sharp, Ph.D. Director of Brewing Operations Ninkasi Brewing Company

WHIRLPOOL VS. DRY- HOPPING: SENSORY ANALYSIS

Experimental Design

Objectives:

- Minimize confounding variation
- Factors: Cultivar (12) and Addition (2)
 - Subfactors: KO order, Kettle boil, Fermentation variation

Challenges:

- Only 2 factors but total treatments = 24
- Complete design = 25 units *2 reps* 6 sensory reps = 300 samples.
- Brew length

Experimental Setup

12 Cultivars

Amarillo

Cascade

Chinook

Citra

Halletauer Mittlefrüh

Huell Melon

. .

Mosaic

Nelson Sauv

Nugget

Simcoe

Saaz

Unhopped

Base

- 12°P wort
- 100% pale ale malt
- California ale (18°C)
- 25 ppm IAA

Hopping - 4 g/L (~1 lb BBL)

- Whirlpool: 25 min @ 87-95°C
- Dry-hopping: 72 hours @ 18°C on yeast at cap.

Analysis

- Triangle tests on Reps
- Descriptive sensory analysis on all treatments

Take-aways

- Extraction efficiencies may be very low
- Dry-hopping increases aromatic intensity relative to late hopping
 - Aroma character may be significantly difference between the two

OREGON STATE UNIVERSITY 19

Main objective

The main goal of this project was to determine a dose response curve for Cascade hop aroma.

Does more hop material = more aroma?

Things to consider when dry-hopping on small scale..

- Sample inhomogeneity
- Dissolved oxygen uptake
- Package scalping

MBAA TQ vol. 53, no. 3 · 2016 · pp. 140-144

PEER-REVIEWED PAPER

Dry Hopping on a Small Scale: Considerations for Achieving Reproducibility

Daniel M. Vollmer and Thomas H. ShellhammerDepartment of Food Science and Technology, Oregon State University, Corvallis, OR 97331, U.S.A

Hop Preparation and Dry-Hopping Parameters

• Blend brewer's cuts of whole cone hops by grinding

Brewing "unhopped" beer

Beer Specifications:

- Grist:
 - 85% Pale 2-row
 - 13.5% Caramel 10L
 - 0.5% Caramel 120L
- Original Gravity: 10.6 PReal Extract: 3.16 P
- **BU** = 20 mg/L (iso-extract)
- **ABV** = 4.8 % AB\/

Evaluations using draft beer

- Minimized total package oxygen
- Great for sensory testing implementation

Sensory evaluation - descriptive analysis

Sensory evaluation – descriptive analysis external controls

	Attributes	Base (No dry hop)	3.8 g/L	16 g/L	Ballast Point Grapefruit Sculpin	Hop Valley Citrus Mistress
rs Based nly	Overall Hop Aroma Intensity	0	8-9	14-15	14-15	7-8
lescriptors Aroma Onl	Citrus	0	7-8	5-6	13-14	6-7
Assess D	Herbal/Tea	0	5-6	12-13	1-2	6-7

- Panelists came to consensus for attributes on commercial and internally made samples
- References were served to panelists at each DA session

Hop acids – what you may find in beer

Iso-Alpha Acids

Alpha Acids

Humulinones (oxidized alpha acids)

Regarding dry-hopped beers... Does BU work? What drives bitterness?

Beer: 121 unique brands from 42 breweries

• 30 brands multi rep study + 91 brands single rep study

Chemical analysis: 7 factors

- Iso-alpha acids, oxidized hop acids, alpha acids, TPP,
- ABV, RE, pH
- BU

Sensory analysis:

- Bitterness intensity
- Multiple Replication study: data for model building
- Partial Replication study: data for model testing

O REGON STATE UNIVERSITY

Cascade hops have broad (low) enzyme activities							
Enzyme	Hops	Malt (130 dp)					
α-amylase	0.35	198					
β-amylase	0.41	13					
Amyloglucosidase	0.02	NA					
Limit dextrinase	< 0.01	NA					
		-					
		O REGON STATE UNIVERSITY					

HOP ENZYMES PERSIST IN PACKAGED BEER

Enzyme action during production and post-packaging

Dry hopping schedule:

- 2 days after yeast harvest
- Dry hop warm
- 2-4 lb/bbl hops
- 2 dry hop additions
- 7 days on hops

Finishing:

- · Crash cool
- Centrifuge
- Up to 24 hours hold prior to packaging

O REGON STATE UNIVERSITY

Conclusion

- Humulinones coming from hops (during processing and storage) can significantly impact dry-hopped beer bitterness
- Hop-derived enzymes can alter carbohydrate make up of Real Extract
 - Refermentation in the presence of yeast (for example bottle conditioning)
 - Lead to diacetyl spikes
 - SOLUTION: dry hop timing, temperature, hop variety, pasteurization
- Hop enzymes persist in finished beer
 - Dry-hopped beers likely become sweeter with age

OREGON STATE UNIVERSITY

Acknowledgements

Oregon State University

Jeff Clawson

Kaylyn Kirkpatrick Andrew Sutton

Cameron McDaniel

Dan Vollmer

Hops

John I Haas

Yakima Chief HopUnion Crosby Hop Farm

Funding agencies

Fonds Baillet Latour Fund Hop Research Council

Breweries

Allagash Brewing Company

Craft Brew Alliance

Bridgeport Brewery Ninkasi Brewing Company

Russian River Brewing Company pFriem Brewing Company

Melvin Brewing Company

O REG O N STATE UNIVERSITY

